
NOTATION 

T, design temperature; f, input temperature; T, time; AT, time step; ~, circular fre- 
quency; ~, dimensionless circular frequency; k, fluctuation amplitude attenuation coeffi- 
cient: q, heat-flux density on the body boundary; a, thermal diffusivity factor; ~, heat- 
conduction coefficient; h, distance from the body surface to the point of temperature mea- 

' ~ �9 �9 

surement; G, Green's function; J, functional; Jq, gradient of the functzonal; Sn, dmrectzon 
of descent in the n-th iteration, and n, viscosity index of the iteration algorithm. 
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REGULARIZATION OF THE SOLUTION OF THE INVERSE HEAT-CONDUCTION PROBLEM IN 

A VARIATIONAL FORMULATION 

A. D. Markin and G. G. Pyatyshkin UDC 536.2 

A version of the solution allowing numerical minimization of the target functional 
to be eliminated is considered. 

The effectiveness of a combination of analytical and numerical methods of solution for 
the analysis of inverse heat-conduction problems (IHP) is a result of many factors. One of 
the most significant is analytical analysis, which largely determines the algorithm for solu- 
tion of the IHP as a whole. In this respect, the example of using gradient methods to solve 
IHP is illustrative [i]. Finding the analytical expression for the gradient of the func- 
tional which eliminates the operation of numerical differentiation markedly expands the re- 
gion of application of the algorithm developed. At present, there is an extensive biblio- 
graphy on IHP solution; see [2], for example. However, despite the wealth of literature 
sources, the development of effective and simple computational algorithms even for one-dimen- 
sional IHP remains an urgent problem. This is associated with the multiplicity of IHP for- 
mulations sometimes requiring separate approaches, the increase in the demands on the accur- 
acy of the results obtained, the appearance of new computational techniques permitting model- 
ing at a qualitatively new level, and so on. 

Now consider a version of the regularization of IHP solution in a variational formula- 
tion, which combined numerical and analytical methods of analysis and allows a sufficiently 
simple algorithm for boundary-condition identification to be obtained. 

The basis of the approach is to establish the relation between the conditions defining 
the IHP and the desired boundary conditions [3]. For example, insolving IHP for a plane wall, 
this relates the known temperature and its gradient at one boundary to the desired tempera- 
ture or its gradient at the other boundary. 

In general form, the variational formulation of IHP was given in [1]. 

Defining the target functional analogously gives 
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J = .I (t - -  t*) 2 dT, 
0 

(1)  

where t* = t*(T) is the known temperature inside the body (possibly the result of measurement); 
t = t(~) is the theoretical temperature at the measurement point in accordance with the mathe- 
matical model of the given process. 

Consideration is confined to a Cartesian coordinate system, since the structure of the 
approximating system of algebraic equations with a tridiagonal coefficient matrix is signifi- 
cant for the future analysis. The mathematical model of a one-dimensional linear case takes 
the form 

Ot O~t 
= a . . . . . .  " ~ 0 ,  O ~ x ~ b ,  t(b, ~) =~1(~); 

0"~ Ox z ' (2)  

__ ~ 0._~t (b, ~) = [~ (z); t (x, 0) = ts (x); q/(~)  = - -  ~ 0_~t (0, ~). 
Ox Ox 

Numerical minimization of the functional in Eq. (i) taking account of Eq. (2) is possi- 
ble. However, this version of the search for a solution is associated, in some form, with 
numerical determination of the gradient of the functional in Eq. (I). Therefore, the system 
of algebraic equations approximating Eq. (2) is investigated in more detail. For the sake 
of simplicity, consider a grid with a uniform step denoting the number of the point with re- 
spect to z by i and the number with respect to x by j (i = 0, i, 2, ..., M; j = 0, i, 2, ..., 
N). 

A strictly implicit system is chosen for the approximation of Eq. (2). 

The system of algebraic equations approximating Eq. (2) takes the form 

A"+' Ct~• ~ i + l + B t ~ + l +  + D  i = 0 ,  1 = 1 ,  2, 3 . . . .  , N - - . 1 ,  

where for the chosen model 

A = C = ah~ ~ i h~ = F; B = - - 2 F - - 1 ;  D i = t  i .  (3 )  

The coefficient matrix of Eq. (3) is tridiagonal in form. The most effective method of 
solution of this type is the factorization method [4]. 

The desired solution of Eq. (3) is written in the form 

t•+t tl+l i - ,  = aj_~ i + ~s-t (4)  

according to the factorization method, and the following theoretical expressions are obtained 
for the fitting factors 

A C~j-1 + D} 
=j: ; 13j : (5 )  

- -  B - -  C=j-I -- B - -  Caj-a 

In approximating boundary conditions of the second kind using the expression recommended 
in [2], the result obtained for the left-hand boundary is 

F q f F - - - ~ - + - ~  t'o 
~o = - ;  [ 3 o =  ( 6 )  

1/2 + F 1/2 + F 

and f o r  t h e  r i g h t - h a n d  b o u n d a r y  ( f 2  > 0 on h e a t i n g )  

" F  h~ 1 �9 
t~ :I-' l.' T + F~N-- '+  - 2  t~ = (7)  

1/2 + F - -  ~jv_,F 

In this case, the discrepancy between the known f and theoretical tN temperatures is deter- 
mined as 
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hx 1 i 
12F--~5 + Sty._, + T t~ 

1/2 --~- F- -  ~zN-1F __ []. I = 8, 

where 6 is the error in specifying the experimental information 

(8) 

Eliminating the quantities ~, 8a, ..., ~j-,, ..., 8N_a by means of the recurrence rela- 
tions in Eq. (5), it is found that 

~N_, --  13o l -I  ~ , .  + ' c  I-1 ~,,,~ 
m ~ l  h=:l i n c h  I 

(9) 

Writing 8N-, in the form 

~N_l=qfFy-}-F2 
and taking account of Eq. (6), the following expressions are obtained for Fx and Fa 

(10) 

F~ k N--~ 

1/2 i 'm= l 

F.~ - -  t_..__Lo N--~ g--1 N--I 
i/2 + F l-I ~,~ + ~ ( D~ I-I ~ .  (11) 

Using Eqs. (8) and (i0), it is possible to determine the desired functional relation 

(6-q- f~+l) (+-~-  F - -  ~N_,F) --  [~ +1 h----~x F- -  F2--t~ 1-~ 
L 2 ( 1 2 )  

q~+~ (~) = FF~ 

between the boundary conditions f, and fa and the arbitrary thermal load qf. Qualitative con- 
firmation of this conclusion was obtained in [5]. 

In the subsequent analysis, it is expedient to use the heat-conduction equation in opera- 
tor form 

Aql = b6, (13) 

where b 8 are the characteristics of the thermal model, measured with an error; A is a linear 
continuous operator. 

It is required that the quadratic deviation of the left-hand side of Eq. (13) from the 
right-hand side over the whole range of variation of T be finite (the constraint is ultimately 
determined by the error in specifying the initial data) 

T~ 

(Ao -- b~)2d.~ ~ p~. 

0 

(14) 

Tikhonov has shown that, imposing certain constraints on the casee of permissible func- 
tions, in which the solution is sought, the problem may be converted from an incorrect to a 
conditionally correct formulation. In many practical IHP, it is sufficient to impose con- 
straints on the first derivative of the desired function [6]i This entails minimizing the 
functional 

T m 

%~I = ~ i ,  f q ;%,  q; = oq.,/o~. 
�9 q] 

(15) 

The set of Eqs. (14) and (15) is regarded as a problem at a conditional extremum. Using the 
Lagrangian-multiplier method results in the function 
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TABLE I. Initial Experimental Data, Theoretical Heat Flux, 
Theoretical and Accurate Surface Temperature According to 
the Data of [5] and the Present Method 

Fo = 

b z 

0,08 
0,16 
0,24 
0,32 
0,40 
0,48 
0,56 

t 
(x=0,5) 

0,040 
0,118 
0,198 
0,278 
0,358 
0,438 
0,518 

t, accurate 
(x = o) 

0,31915 
0,45147 
0,55436 
0,64472 
0,72942 
0,81156 
0,89253 

numerical 

0,22570 
0,45873 
0,53962 
0,63475 
0,72280 
0,80727 
0,88979 

[ t (preseut I d q (present work) nu- q [51 
merical work) 

(x = 0) 

0,256 0,80891 
0,441 1,22240 
0,537 0,97454 
0,634 1,00030 
0,722 1,00010 
0,807 1,00000 
0,890 1,00000 

0,9060 
1,1000 
0,9880 
1,0001 
1,0000 
1,0000 
1,0000 

= q~2 + IX (Aqf --  06) 2, (16) 

which must satisfy the Euler equation 

Solving Eqs. (14) and (17), taking account of Eq. (16), offers the possibility of determining 
the values of qf and ~ corresponding to the regularized solution of the initial problem. 
Taking account of Eqs. (8) and (i0), Eq. (16) takes the form 

h~ 1 
( f=F--~-+F(qyF + F2)-+- v t x  ,~+t/2 

= q~2 + I x 1/2 + F- -  O~N_IF /t j , (18) 

which leads, by means of the Euler equation, to an ordinary differential equation in terms of 
the desired function qf(T): 

T4F --  rPlqt - -  q)~ = O, (19) 

where 7 = i/~ is the regularization parameter defined by Eq. (14) and 

(FFx)Z [2F ~ + FF' + t~ 2 []+'K 
cpl = ~ ; cp2 = FFfi 

K~ K 2 

K = 1/2 -l- F -  ?N_tF. 

Analysis of Eq. (19) shows that the constraint on the class of permissible functions of 
rye type in Eq, (15) actually corresponds to the formulation of an additional boundary condi- 
tion; in fact, Eq. (19) is of second order. 

The accuracy of the method proposed for IHP solution is estimated by comparison with the 
data of [5], for the example of the following methodological problem given in [5]. For a plane 
wall of unit thickness, which is heat insulated at one surface, the boundary conditions must 
be established from the known temperature in the middle plane (x = 0.5). The known tempera- 
ture is determined by accurate solution for constant (unit) thermal load. The grid parameters 
correspond to those in [5]: h x = 0.i; h r = 0.08; a = i. 

The results of solving the model problem are shown in Table i. 

Analysis of the numerical investigation of the algorithm realizing this method of identi- 
fying the boundary conditions reveals high accuracy and simplicity of computer solution. In 
particular, converting the solution program for the direct problem to the solution of IHP by 
the given method requires 22 operators in FORTRAN. 

NOTATION 

t, temperature; x, T, spatial and time coordinates; ~, a, thermal conductivity and ther- 
mal dlffusivity; q, heat flux density, hx, hy, space--time parameters of grid. 
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SINGLE-PHASE PROBLEMS OF THE MELTING OF SOLID WEDGES 

A. D. Chernyshov and O. P. Reztsov UDC 536.42 

Accurate solutions obtained in quasisteady formulation take the form of finite sums 
and are valid from a plane two-face aperture angle of k~ where k is any simple frac- 
tion. 

The present work is a continuation of [I] and uses the same notation and formulation 
of the problem of the melting of solids. 

i. In Cartesian coordinates (y, z), the quasisteady heat-conduction equation takes the 
form [i] 

O~U : OzU Vo OU 
ay~ + ~  + a az =o.  (1) 

The boundary conditions of the problem are 

U(y,  z ) l z=O,  U(y, z)~<O, r , , E ~ ,  (2)  

U(y, Z)--~Uo,,~O as rm --)- oe , (3)  

whe re  ~ i s  t h e  r e g i o n  o f  m e l t e d  s o l i d  wedge .  D i m e n s i o n l e s s  v a r i a b l e s  a r e  i n t r o d u c e d  

~j = (z sin @j - -  y cos @J Vo/a, ] = 1, 2. (4)  

The angles O~ and Oa are measured counterclockwise from the positive direction of the 
axis to a straight line passing through the corresponding face of the plane wedge (Fig. i). 
The equations of the faces of the melting plane wedge here are: ~a = 0, $= = 0; for the 
region inside the wedge, ~x > 0~ ~2 > 0. The straight line ~ = const and ~2 = const are 
parallel to the corresponding planes of the wedge. Note that in geometric terms C x and S a 
are the distances from the point with coordinates (y, z) to the corresponding face of the 
wedge, multiplied by Vo/a. With this definition of @I and @2~ the aperture angle of the wedge 
~o corresponds to the expression 

0,2 - -  01 - -  % = n - -  % .  ( 5 )  

The heat-conduction equation (i) is now written in new variables 

Y 

~ 
- -  - - - - - -  > - -  - z 

Fig. i. Cross section of the melting 
wedge (shaded region). 
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